If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+3x+2x^2=0
We add all the numbers together, and all the variables
3x^2+3x=0
a = 3; b = 3; c = 0;
Δ = b2-4ac
Δ = 32-4·3·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3}{2*3}=\frac{-6}{6} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3}{2*3}=\frac{0}{6} =0 $
| x1+12=48 | | U=83.14z | | 3y-5=23+× | | 3.00=2×3.14×r | | 3x-9=2x+74 | | Y=m+3/2 | | 2x-3x=-14 | | x=44/2x | | X=8y/9y-5 | | 18h+18=180 | | 8^5=2^2m+3 | | 2/7=x+6/7 | | (3x+5)+(2x−20)=180 | | (2x−20)=(3x+5) | | (x-15)=180 | | (x+5)=180 | | 1/2x+x=150 | | 3^(6x)=4^(-×-4) | | 5x-3+4x=105 | | 25/20=n/4 | | X2(3+4x)=0 | | -10+z2=-3 | | x+4(5/13)=10 | | 1/x-4-3/x+6=10/x2+2x-24 | | x=4(5/3)=10 | | 1/(v+1)=-6 | | 1x-4=-1+6 | | 7/3x+12=9/x+4-4/3 | | (5v-9)/2=14+(2v-7)/6 | | 5/8=x-1/4 | | X-2/5x+1=x+4/x | | |4u-2|=6 |